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1. PROBLEM STATEMENT

NASA’s Soil Moisture Active-Passive (SMAP) mission seeks to provide
both active (radar) and passive (radiometer) data in the L-band
microwave region of the spectrum. L-band microwave observations of
the surface are sensitive to the amount of near-surface moisture in the
soil.

Accurate knowledge of the spatial distribution of soil moisture at
hillslope scales (e.g., 10’s to 100’s of meters) can significantly advance
applications requiring high-resolution soil moisture information. The
spatial distribution of soil moisture is controlled across a range of scales
by variability in topography, soils, vegetation, and precipitation.

Although the ground resolution of the proposed SMAP products is too
coarse to capture hillslope-scale variation in soil moisture, they are
nevertheless useful for hillslope-scale estimation in the context of a
data assimilation system. Here we describe efforts to construct an
ensemble Kalman Filter to fuse simulated noisy L-band microwave
brightness and radar backscatter observations with uncertain hillslope
scale soil moisture estimates derived from a physically-based
ecohydrology model.

2. EXPERIMENTAL DESCRIPTION

The purpose of this experiment is to demonstrate that SMAP L-band
micro-wave radar backscatter observations are valuable for hillslope-
scale soil moisture, through a data assimilation framework that
combines noisy L-band microwave observations with hillslope-scale
estimates of moisture from a process hydrology model.

The lack of space-borne L-band observations necessitates an Observing
System Synthetic Experiment (OSSE) approach to evaluate the potential.

In this synthetic experiment we use the Integral Equation Model (IEM)
to simulate radar backscatter observations assuming the following:

> Observations occur every 72 hours at 0900 local time

> Radar instrument consistent with SMAP specifications (1.26 GHz)

> Radar backscatter products have a ground resolution of 3 km
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The semiarid Walnut Gulch Experimental Watershed (WGEW) in
Arizona, USA is used as the experimental setting.

The ecohydrology model used here is the Triangulated Irregular Network
(TIN)-based Realtime Integrated Basin Simulator and Vegetation

Integrated Evolution model (tRIBS-VEGGIE) [/vanov, 2008a].

tRIBS-VEGGIE resolves moisture, energy, and carbon balance. Infiltration
is simulated via the 1-D Richards equation with moisture redistribution
in the vadose zone occurring in the steepest, downslope direction. The
WGEW computational mesh contains 19,447 pixels with 10 soil layers.

3. ACTIVE OBSERVING SYSTEM

The Integral Equation Model (IEM) is used as the observing system to
simulate backscattered L-band microwave energy based on the near-
surface moisture content.
The observing system explicitly
treats the influence of topography
EGEaA RIS on the observational geometry.
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Local incidence and polarization
rotation angles are determined by
the topographic slope and aspect,
as well as satellite sky position as
parameterized by an azimuth and
zenith angle.
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Fig 3: Schematic representation of the
impact of slope and aspect on
observational geometry

The observing system is used to
simulate backscatter observations
every 72 hours based on four
potentially true evolutions of the
soil moisture field simulated by
tRIBS-VEGGIE and aggregated to a

Scale Of 3 km 5 = g = 1.(l;<ilometers - High : -10.4
. Low :-13.3

Fig 4: Average of four observations
simulated from four true states in the
horizontally-copolarized state at 216 hr.
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At each analysis, the observing
system is used to produce
predicted observations

4. SOURCES OF UNCERTAINTY

The primary assumed sources of uncertainty in soil moisture predictions
are: (1) uncertainty in the hydrometeorological forcings supplied to the
model, and (2) inadequate knowledge of soil hydraulic and thermal
properties in the watershed.

The spatial organization of soil
textural classes is assumed known.
Soil parameters are generated
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Fig 5: The distribution of soil types in
WGEW.
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4. SOURCES OF UNCERTAINTY

Ensembles of hydrometeorological forcings are simulated with three
simple stochastic models: (1) a stochastic model of hourly rainfall, (2) a
cascade model to perturb hourly rainfall rates and disaggregated hourly
rainfall in space, and (3) a weather generator to simulate
thermodynamic weather forcings [/vanov, 2008b]

(a)
Bl St. dev. rainfall @  Mean rainfall ﬂ

by

100 200 300 400 500 600
(b)

50

o

—t

o
3]

o

Cloudiness [-] Rainfall [mm/hr]
o

100 200 300 400 500 600

o

(41
o
L]

Temp. [° C]

W [m/s]

S

0 100 200 300 400 500 600
(e)

E

= 1000

¥ 500

5 AAIAIIAAAAIAAIHAHAHHIH‘
S o 100 200 300 . 400 500 600

Fig 6: A summary of the stochastic hydrometeorological forcings used in the
experiment.

5. DATA ASSIMILATION APPROACH

A square root analysis ensemble Kalman Filter (EnKF) [Evensen 2004]
updates the tRIBS-VEGGIE simulated soil moisture state based on 256
replicates. tRIBS-VEGGIE is re-initialized with analyzed states, which are
propagated forward to the next analysis, influenced by uncertain
forcings and parameters. Nine forecast-analysis cycles are performed (27
days).

The EnKF experiment is repeated with four sets of observations
simulated from four potentially true realizations of soil moisture, and
results are compared against a 1024 replicate open loop ensemble.
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Fig 7: A flowchart of the EnKF-based hillslope-scale moisture estimation experiment

6. RESULTS: ANALYSIS INCREMENTS

Analysis increments averaged across the four experiments exhibit spatial
structure associated with heterogeneity in soil types and topography.

The square structures seen also suggest that the EnKF may be
effectively correcting errors in precipitation.

Fig. 8: Analysis increments in near- e
surface moisture
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RMSE values averaged across experiments suggest relatively low
estimation error in predictions of near-surface soil moisture.

The channel network seems to be associated with higher average RMS
error in near-surface soil moisture.

Furthermore, predictability seems to vary by soil type

Fig. 9: EnKF average RMSE in near-surface
moisture S
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6. RESULTS (CONT.): ERROR REDUCTION

Relative to a 1024 replicate open loop simulation, the error in the EnKF
estimate of near-surface moisture is substantially lower in the majority
of the watershed.

The figure suggests that in much of the WGEW, the average RMS errors
in the EnKF prediction of near surface moisture are less than 53% of
the corresponding RMS errors in the open loop prediction.

Fig. 10: Comparison of EnKF and
open loop RMSE .
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The bias associated with the EnKF estimate of near surface soil
moisture is also relatively small.

Fig. 11: Average bias in near-surface
moisture estimate
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6. RESULTS (CONT.): MOISTURE DYNAMICS AT
THE PIXEL SCALE

Temporal dynamics of near-surface and profile-integrated moisture
content during the EnKF experiment are investigated at two pixels
within WGEW (shown for one set of observations below).

Results show that the EnKF dramatically improves the pixel scale
estimate of the near-surface soil moisture at the analysis. However, the
estimate of profile moisture does not converge to the truth during the

experiment.

However, the pixel scale estimate diverges from the true moisture
dynamics relatively rapidly, owing to uncertainty in the parameters and
forcings.

Fig. 12: Inferred pixel-scale near-
surface moisture dynamics
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7. SUMMARY

This work demonstrates the potential importance of SMAP
observations for improving soil moisture knowledge at hillslope-scales,
thereby potentially benefitting applications requiring information in
such high detail.

Success of the assimilation approach is preconditioned, however, on
adequate representation of uncertainty in forcings and parameters and
an observing system to simulate observations based on model states.

Accurate estimation of profile-integrated moisture content may require
a longer assimilation experiment, larger ensembles, or better
constraints on parameter values.
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